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Abstract

This note shows that one of the conditions commonly thought to be

sufficient for urban population densities to follow the negative expo-

nential function is incorrect. It is shown that the correct condition
on housing demand is that the income-compensated price elasticity equals
-1. Many investigators erroneously believe that a unitary uncompensated
elasticity is required.





A Note on Sufficient Conditions for Negative
Exponential Population Densities

by
Jan K. Brueckner

1. Introduction

The main testable prediction of the Mills-Muth model of urban

spatial structure is that population density declines as distance to

the urban center increases. The repeated confirmation of this predic-

tion in empirical studies has led to a widespread consensus on the va-

lidity of the basic urban model, a rare achievement in applied economics.

The most common specification of the population density function is

negative exponential: density D is related to distance to the urban

^YX
center x by the function D = D„e , where y > and D_ is population

density at x = . Although the negative exponential is a convenient

functional form, most empirical investigators are aware that it is appro-

priate only under strong restrictions on the housing production tech-

nology, consumer tastes, and the nature of commuting costs. Moreover,

it is common for researchers to cite Mills [3] for the list of conditions

which justify the function's use (see Kau and Lee [2] and McDonald and

Bowman [4]). Mills' conditions are 1) a Cobb-Douglas housing production

function; 2) commuting costs which are linear in distance; 3) a unitary

price elasticity of housing demand. The purpose of this note is to point

out the last of these conditions is incorrect: the appropriate restric-

tion on housing demand is that the income compensated price elasticity

(not the regular price elasticity) is unitary. While this restriction

is correctly stated by Muth [7, Ch. 4], the failure of empirical re-

searchers to grasp the difference between the elasticity restrictions
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(and the incorrectness of Mills' version) is no doubt due to the lack

of clarity of Muth's argument. In the next section of this note,

analysis which is equivalent to Muth's is clearly presented, and the

error leading to Mills' incorrect restriction is discussed.

2. Analysis

The basic urban model assumes that the city is inhabited by indi-

viduals with uniform incomes and identical tastes over consumption of

housing services q and a numeraire non-housing good c. Commuting cost

as a function of radial distance to the urban center is t(x), so that

disposable income at x is y - t(x), where y is income at the center.

Housing services are produced with capital N and land I according to

the function H(N,£), which is homogeneous of degree one (housing ser-

vices are best viewed as the services derived from floor space, with H

the production function for floor space) . The rental price per unit of

housing services (per square foot of floor space) is p, which will de-

pend on X, while the rental prices of capital and land are i and r

respectively, with i constant over x but r free to vary.

Population density may be computed by noting that the ratio of

square feet of housing per acre of land to square feet of housing per

dwelling equals dwellings per acre of land. Thus the ratio (H/!i)/q

equals dwellings per acre of land and is proportional to population

density when households are of uniform size. Now the appropriate-

ness of the negative exponential density function depends on form of the

x-derivative of the natural logarithm of density. If this derivative

is constant over x, then densities will follow the negative exponential

function. Letting * denote natural log, the derivative of interest is
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1 dP _ dP* d[(H/£)/q]* _ d(H/0* dq*
P dx " dx dx dx dx ^ '

The following analysis will indicate when (1) will indeed be constant

over X. The first step is to calculate d(H/£)*/dx making use of the

housing producer's first-order conditions. Housing producer profit is

pK(N,t) - iN - r£, and the necessary conditions for a maximum are pK = i

and pH^ = r (subscripts denote partial derivatives). These equations

together iir.ply H (N, S.)/H^ (N, 2.) = r/i, and the zero-degree homogeneity of

K and K^ allows this equation to be rewritten as K_(N/ll,l)/lL (N/£,l) = r/i.

The last equation determines the capital-land ratio N/ £ solely as a

function of the factor price ratio r/i (this, of course, is a reflection

of the fact that constant returns functions are homothetic) . Now the

dependence of H/£ on x follows from the dependence of N/£ on r/i and

the dependence of r on x. To see this, note first that

d(H/£)'^- ^ J.
dH(N/£,l)

dx K dx

= |H,(N/£,l)^i^

^1^^/^'^^ d(N/£)^
H dx '

^^

where the first equality uses K(N,£)/£ = H(N/£,1). Now since H = i/p and

N/£ is a function only of r/i, (2) may be written

iN d(N/£)* d(r/i)* ^ dr* , ,

pH d(r/i)* dx ^N^N£ dx ' ^^

where u H iN/pK is capital's factor share in housing production and a

is the elasticity of substitution between capital and land in housing
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(note dl*/dx = and d(N/£)*/d(r/i)* =

[d(N/li)*/d(H2/lL|_)*][d(H2/H^)*/d(r/i)*] = a^^ • 1). While (3) shows how

d(H/Jl)*/dx is related to dr*/dx, one further step shows the connection

between dr*/dx and dp*/dx. Total differentiation of the zero-profit

identity pH - rA - iN = (profits are identically zero by constant re-

turns) yields

using the producer's first-order conditions. Rearrangement of C^) yields

dx rZ dx Mj^ dx ' ^^

where \i = r£/pH is land's share in housing production. Combining (3)

and (5) then gives

djE/D* ^ %'^m dp*

dx
^z ^^ ' - ^^"^

Computation of dp*/dx makes use of the first-order conditions for

the consum.er optimization problem. The problem is to maximize the

utility function u(c,q) subject to c + pq = y - t(x) by choice of c, q,

and X. Substitution yields the maximand u(y - t - pq,q) and the first-

order conditions u^/u^ = p and

4^+q-^=0. (7)
dx ^ dx

Rearrangement of (7) then yields

d£* ^ -dt/dx
^ Q (g^

dx m '
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where m H pq is expenditure on housing.

Now in order for the identical urban residents to live voluntarily

at different locations within the city, each individual must be loca-

tionally indifferent. That is, every location must be optimal, implying

that condition (7) must hold at all urban values of x. Locational in-

difference will not obtain, of course, unless utilities are uniform

across x. It is easy to see, however, that satisfaction of (7) at all

X guarantees x- invariant utilities. This follows from totally differ-

entiating u(y - t - pq,q), which yields -u (dt/dx + qdp/dx) + (u„ - pu^)dq/dx,

a quantity which equals zero at all x when (7) and u /u = p hold

ever>a;here. In essence, the spatial variation in p reconciles urban

residents to differences in communting costs; the decline of p with x

(see (8)) cancels the utility-decreasing effect of longer commutes and

leaves consumers locationally indifferent.

The final step in deriving dD*/dx is the computation of dq*/dx, a

task which is immediate in light of the preceding discussion. Since

the decline with x in the price per square foot of housing keeps con-

sumer utilities constant in the face of higher commuting costs, it is

clear that the change in q caused by x-induced changes in p and dispos-

able income follows from movement along an income-compensated (constant

utility) demand curve. Therefore

ial = 1 d£ ^ 1 22.1 .
d£^ ^ d£l .g.

dx q dx q 3p | u=constant dx dx '

where " is the income-compensated elasticity of demand. Substituting

(6) and (9) into (1) then yields
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dD* / ^N°NJl

/

dp*
dx

^nV '

\ dt/dx ,,-,

where the second equality uses (8) . Since all terms in (10) are posi-

tive except for n. (10) is unambiguously negative; population density

declines with x. The intuition for this result is easily stated: lower

housing prices at greater distances lead to larger dwellings (dq*/dx =

ndp*/dx > 0) while lower land rents at greater distances make lower

capital-land ratios optimal, and thus lead to fewer square feet of

housing per acre (d(H/J.)* = u a dr*/dx < 0). Together, these effects

yield fewer dwellings per acre and lower population densities at greater

distances.

It is now possible to consider the central question of this note:

when will (10) equal a constant, leading to a negative exponential den-

sity function? A sufficient condition for this outcome is clearly that

2
each element in (10) is itself independent of x. In other words,

y , p , , n, dt/dx, and m all should be invariant with x (note

that the factor shares and elasticities will not in general be indepen-

dent of x) . Now if the housing production function is Cobb-Douglas

(H(N,S-) E N £ ), then a = 1, y = a, and y = 1-a. Moreover, if _--.

t(x) =
(ft + 6x, then dt/dx =5. If in addition the income compensated

demand elasticity r, is constant and if movement along the income-

compensated housing demand curve yields constant expenditures m, then

the sufficient conditions for constancy of (10) will be met. Clearly,

n = -1 leads to satisfaction of both these requirements since a unitary

price elasticity yields expenditures which are independent of price and
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thus constant over x. In summary, sufficient conditions for the validity

of the negative exponential density function are 1) a Cobb-Douglas

housing production function; 2) commuting costs which are linear in

distance; 3) a unitary income-compensated price elasticity of housing

demand

.

Although Mills [6] imposes specific functional forms at the begin-

ning rather than at the end of his derivation, much of his analysis

parallels the above. He implicitly calculates d(H/£)*/dx as in (6),

and condition (7) enters importantly in his argument. Mills' derivation

differs from the above, however, in the computation of dq*/dx. First,

he assumes that the demand function for housing has the constant elas-

ticity form q = AI p , where I is income and p as before is price.

While such a demand function is perfectly acceptable. Mills' error is

to substitute gross income y instead of disposable income y - t(x) in

place of I. The resulting demand relationship q = Ay p ignores the

crucial fact that consumer purchasing power declines with x! Calcula-

tion of dq*/dx based on this inappropriate relationship yields dq*/dx =

(3q*/9p*) (dp*/dx) = 6dp*/dx. Recalling (6) and (8), substitution in (1) then

gives

dP* ^ [
^N°N£. _

I

dp*

dx
^ ^c ' "^^

/^N°N£ Jdt/dx
U, I

m
e^i^^. (11)

Note in (11) that the uncompensated price elasticity 6 incorrectly takes

the place of the compensated elasticity r (compare (10) and (11)),

Now since the above demand relationship implies m = Ay p , a unitary
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price elasticity (6 = -1) implies m = Ay . Imposing in addition the

assumptions of a Cobb-Douglas production function (which yields

\i^o /Ur. = a/(l-a); see above) and linear commuting costs (implying

dt/dx =6), it follows from (11) that dD*/dx = (- —^ + 1)6/Ay^ = -6/(l-a)Ay®,

a constant.

This discussion shows how misspecification of the demand relation-

ship by use of an improper income variable leads to the erroneous con-

clusion that a unitary uncompensated price elasticity, together with

the other restrictions, yields a constant dD*/dx, To show explicitly

that this elasticity assumption will not yield the desired result when

the proper substitutions are made, note that if q = A(y - t(x)) p , then

dq* ^ e_ dt dp*
dx y-t dx dx

where e^^ = m/(y-t) is the expenditure share for housing (the second

inequality uses dt/dx = -mdp*/dx) . Imposing a Cobb-Douglas production

function and linear commuting costs and assuming 6 = -1, it follows

after substituting (12), (6), and (8) into (1) that

dp* ^ _,_a. _ S_

dx ~ 1-a ^q m

= -(l^ - eA(y-t(x))®"^) -, (13)
^"'^

A(y-t(x))^

a quantity which is clearly not constant over x (note m = A(y-t) when

£ = -1). The non-constancy of (13) is, of course, simply a reflection

of the fact that a unitary uncompensated price elasticity generally im-

plies a non-unitary compensated elasticity, which from above must yield
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a non-constant dD*/dx. Indeed, it is easv to show that Qt - 1, which
q

appears in the position of ri in (10) , is precisely the compensated price

3
elasticity for the given demand function when 3 = -1. The obvious

restriction 9 > (housing is a normal good) implies that the compen-

sated elasticity 9e - 1 exceeds -1, accounting for the non-constancy
q

of dD*/dx in (13).

A wealth of empirical evidence on the parameters of housing demand

is now in existence (see Mayo [3] for a recent survey). An important

question is whether this evidence justifies the use of the negative

exponential density function in empirical studies (in other words, is

the evidence consistent with n = -1?) Unfortunately, the answer to

this question is negative: nearly all studies show that the uncompen-

sated price elasticity of housing demand exceeds -1, implying that the

compensated elasticity is substantially greater than -1. Thus, empir-

ical evidence on housing demand suggests that any negative exponential

4
population density regression will involve specification error.

As a final observation, it is interesting to note that the pre-

ceding discussion necessitates reinterpretation of the results of one

important empirical study of population densities. Recognizing the

possibility of specification error, Kau and Lee [2] used an ingenious

application of the Box-Cox estimation procedure to test for the ap-

propriateness of the negative exponential function rather than imposing

it a priori . However, since they invoked Mills' assumptions, Kau and

Lee interpreted a divergence from the negative exponential form as evi-

dence of a non-unitary uncompensated price elasticity of housing demand.

Their empirical results implied £ > -1 for half the sample cities, with
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B = -1 holding for the remainder, conclusions which appear consistent

with the independent evidence of price inelasticity. As should be

clear from the above discussion, however, the correct inference to be

drawn from Kau and Lee's results concerns the compensated price

elasticity of housing demand. Correctly interpreted, their results

show that this elasticity frequently exceeds -1, a conclusion which

need not imply overall price inelasticity.
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Footnotes

For a recent study estimating such a function, see Glickman and
Oguri [1]; for earlier studies, see Mills [5] and Muth [7].

2
Although this is obviously not a necessary condition for the

constancy of (10) , it is very hard to imagine a situation in which the
elements of (10) are non-constant over x while (10) itself is x-invariant,

3
Using the Slutsky equation

ia. = lal - q ^
3p 3p|u=constant 31'

it follows that

q 3p q q 31 q

4
The erroneous justification for the negative exponential func-

tion (S = -1) is, of course, less strongly contradicted by the
demand evidence.
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